Elbow Pond Improvement Project

John Keith, P.E. Technical Leader Friends of Elbow Pond

Elbow Pond

The Problem

- High Nutrients especially phosphorus (P)
 - Causes risk of algae and cyanobacteria blooms
 - Which makes water unswimmable, dangerous for pets
 - And reduces fish and amphibian life
 - And causes odors and impacts property values
- High P also promotes growth of water plants
 - Watershield, lilies, milfoil, bladderwort, others some invasive
 - Now present far above natural or historic levels
 - Also reduces usability of pond
- P is conserved settles to pond bottom at end of growing season so accumulates over years

Process to Implement Improvement Project

- Organize community and gain support for a project
- Pond Study
- Conservation Commission Approval
- MA Natural Heritage Bureau Approval
- Agreement on Use of Town Equipment and Composting Facility
- Implement Work
- Testing to Measure Effectiveness

Fund-r

aising

Pond Study

- Must be done by independent expert to be credible
 - We used Horsely-Witten the Town's pond consultant
- Contents
 - Define water quality, problem
 - Evaluate alternatives
 - Effectiveness
 - Cost
 - Advantages and risks
 - Recommendations

- Took 2 months, cost ~\$14,000
 - Used PALs and Brewster Pond study data, so limited sampling, which kept cost down

Need to Understand Pond Phosphorus Mass Balance

- Source in Elbow Pond mostly past vegetation deposition and fertilizer use in adjacent cranberry bogs
- Little from septic systems, roads, yards

Phosphorus Accumulation in Ponds Over Time

Natural Phosphorus Sources:

- Leaves, needles, vegetation detritus
- Birds Volcanic ash deposition
- Groundwater inflow

Ρ

Human Phosphorus Sources:

- Road runoff
- Septic tanks
 - Acid rain

- Fertilizer

- Livestock
- Pets

- P accumulates in ponds over time
- A natural process increased by human activities
- Where Elbow Pond is now

- Bottom sediments store P from season to season, resulting increased water concentrations in warm seasons when P is released from sediments
- Cape soil very low in P so does not leach much phosphorus to ponds

3 Strategies to Address the P Problem (To prevent High P causing "algae" blooms)

- 1) Prevention of P addition and natural attenuation
- 2) Phosphorus removal from pond
 - Dredging
 - Macrophyte "harvesting"
- 3) Phosphorus stabilization in bottom sediments
 - Alum Addition
 - Oxidation

If algae blooms occur, options become:

- Wait it out until algae/cyanobacteria dies out
- Biological seeding with plants/microbes that "eat" algae
- Algaecides
- Oxidation to speed up algae life cycle, prevent fish death due to low O2 in water

Methods to Address Phosphorus

- 1) Reduce P inputs to below outflow levels
 - Only controllable source may be active cranberry bog
 - But bog fertilizer practices have State agricultural exemptions
 - Should be low source if good practices followed
 - Not a feasible strategy, but need to study bog effect and ways to reduce P input
 - 2) Dredging or partial dredging of sediments
 - Very expensive, but very effective and quick effects
 - Major ecological disruption however done
 - Approval very difficult to obtain
 - Difficult in kettle hole ponds cannot drain
 - Not a feasible strategy for Elbow Pond

5 Methods to Address Phosphorus

3) Alum addition

- Alum precipitates P from water, settles P to bottom
- Precipitate does not leach and not biologically available
- Precipitate can break down and re-release P 5 to 20 years
- Commonly used practice, often approved
- Cost at Elbow Pond ~\$150,000
- 5) Oxidation
 - Install air bubblers at pond bottom various types (e.g. SolarBee)
 - Requires continued maintenance and energy on-going basis
 - Aerated water inhibits P re-introduction to water from sediments
 - Cost >\$100,000 due to pond size and depth, plus operation cost
 - Often used, easy approval
 - Varied effectiveness less effective and more costly in deeper and larger lakes like Elbow Pond
 - Both not recommended cost and uncertain effectiveness

5 Methods to Address Phosphorus

- 5) Macrophyte harvesting
 - 1 ton (1,000 kg) of plants removed = 2 kg of P removed
 - Low cost if harvester available and place to send removed vegetation
 - Brewster owns a harvester barge
 - Compost facility can accept vegetation
 - Slow to show effect requires multiple harvesting over several years
 - Works if many macrophytes, as in Elbow Pond
 - Requires good technique to prevent ecological impacts and spreading of invasive/nuisance plants
 - Approval likely if no or low impact on threatened species

Strategy recommended by Horsely-Witten after study

Proposed Work

- Remove macrophytes using Town harvesting barge
 - Focus on nuisance plants milfoil, watershield
 - Clip rooted plants ~ 1 foot from bottom

- Do not kill plants allow regrowth to take up more P
- Not in very shallow water avoid impact on reeds, Plymouth gentian, amphibians. Minimize impact on damsel & dragonflies
- Up to 50% of macrophyte ring (likely less due to threatened species)
- Take removed plants to Town compost center
 - Weigh plants removed to determine P removal
 - Plants will make excellent compost
- Monitor water quality before and after work
- Repeat several times until P in sediments and water column reduced to levels below mesotrophic zone
 - <10 mg/l Total P in water column</p>

Approvals

- Notice of Intent filed with Brewster Conservation Commission & MA DEP Natural Heritage Bureau
- Cons Com gave approval in April subject to Natural Heritage approval
- Natural Heritage concerned about impact on threatened species found in H-W study
 - 4 threatened plants found study: resupinate bladderwort, pond arrowhead, Plymouth gentian, Carolina redroot
 - 2 threatened damselflies found: Pine Barrens bluet (blue) and Scarlet bluet (red)
 - Botanical and biological studies required
 - Studies to be done in June and July, report early August
- Hired botanists for bladderwort study ~\$1,000
- Peter Trull, a member of FOEP and qualified biologist, doing damselfly study

Botanical Survey

- To be done in July by approved botanists (when bladderwort blooms)
- Goal: locate and map any state-listed plants, focus on resupinate bladderwort

- Work Scope:
 - Plot the areas occupied by state-listed species on the map.
 - Record water depths in areas where listed species are found
 - Estimate population for each state-listed species with notes on population vigor, co-occurring species, and habitat conditions
- Record and plot on the map any findings of invasive plants
- Prepare a report of survey work including maps and photos

Key Objective: Identify areas to avoid in macrophyte harvesting to avoid impacting threatened species

Elbow Pond Damselfly Study Plan

Monitoring and Evaluation

- Water quality monitoring before the initial harvesting and between 2 weeks and 1 month after harvesting
- Additional monitoring and ~2 months after harvesting
 Show the impact of regrowth of macrophytes on P levels
- Sampling at 2 locations main pond and cove
- Testing for dissolved oxygen, temperature profile, pH and clarity (Secchi disk)
- Samples analyzed for alkalinity, P, N, and chlorophyll
- Monitoring under the PALS program will continue unless the above make this redundant
- Sampling to be done by Elbow Pond volunteers
- Report on effectiveness by consultant to go to DEP and Conservation Commission

Schedule and Outlook

- Studies to be completed in late July
- Agreement with Town regarding use of harvesting barge and compost facility in July
- Natural Heritage approval early August
- Brewster Cons Com approval in August
- Initial harvesting work in late August or September
- Repeat harvesting work in early summer 2020

Costs

Total Hopefully <\$28,000

- Horsely-Witten Pond Study \$14,000
- H-W costs for meetings with DEP, others ~ \$2,000
- Brewster Conservation Commission fee \$35
 - Almost all fees waived environmentally beneficial project
- DEP Natural Heritage fees \$555
- Botanical Survey ~\$1,000
- Biological Survey ~\$1,400
- Fee for use of Town harvesting barge and composting facility – to be determined, but hopefully not high
- Monitoring and evaluation <\$4,000
 - Includes H-W post work evaluation report

Key Challenges

- Fundraising
 - Small number (~30) homeowners around pond, so cost per homeowner a concern
 - Most homeowners contributing, but some are not
- MA Natural Heritage Bureau approval
 - Can seem there is more concern about a few species than overall health of pond
 - Dot i's, cross t's no relief for small privately funded project
- Agreement with Town for use of harvesting barge and composting center
 - First time, novel project, so breaking new ground
- Frustration among Friends of Elbow Pond due to length of study and approval process, and cost

But we are confident the project will get approved and proceed – and will be effective!

Questions?